Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring

BACKGROUND The problems of correlation and classification are long-standing in the fields of statistics and machine learning, and techniques have been developed to address these problems. We are now in the era of high-dimensional data, which is data that can concern billions of variables. These data present new challenges. In particular, it is difficult to discover predictive variables, when ea...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

SparsityBoost: A New Scoring Function for Learning Bayesian Network Structure

We give a new consistent scoring function for structure learning of Bayesian networks. In contrast to traditional approaches to scorebased structure learning, such as BDeu or MDL, the complexity penalty that we propose is data-dependent and is given by the probability that a conditional independence test correctly shows that an edge cannot exist. What really distinguishes this new scoring funct...

متن کامل

Learning Bayesian Network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search

In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search. The experiments will be carried out on three real life credit scoring data sets. It will be shown that M...

متن کامل

Bayesian Network Structure Learning Using Quantum Annealing

We introduce a method for the problem of learning the structure of a Bayesian network using the quantum adiabatic algorithm. We do so by introducing an efficient reformulation of a standard posteriorprobability scoring function on graphs as a pseudo-Boolean function, which is equivalent to a system of 2-body Ising spins, as well as suitable penalty terms for enforcing the constraints necessary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2015

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0143247